Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Sci Total Environ ; 922: 171375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431162

RESUMO

Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.


Assuntos
Glicosídeos , Vibrio , Glicosídeos/toxicidade , Simulação de Acoplamento Molecular , Interações Medicamentosas , Transativadores/farmacologia
2.
Environ Res ; 248: 118418, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316386

RESUMO

There is potential for personal care products (PCPs) components and mixtures to induce hormesis. How hormesis is related to time and transmitted from components to mixtures are not clear. In this paper, we conducted determination of components in 16 PCP products and then ran frequent itemset mining on the component data. Five high-frequency components (HFCs), betaine (BET), 1,3-butanediol (BUT), ethylenediaminetetraacetic acid disodium salt (EDTA), glycerol (GLO), and phenoxyethanol (POE), and 14 mixtures were identified. For each mixture system, one mixture ray with the actual mixture ratios in the products was selected. Time-dependent microplate toxicity analysis was used to test the luminescence inhibition toxicity of five HFCs and 14 mixture rays to Vibrio qinghaiensis sp.-Q67 at 12 concentration gradients and eight exposure times. It is showed that BET, EDTA, POE, and 13 mixture rays containing at least one J-type component showed time-dependent hormesis. Characteristic parameters used to describe hormesis revealed that the absolute value of the maximum stimulatory effect (|Emin|) generally increased with time. Notably, mixtures composed of POE and S-type components showed greater |Emin| than POE alone at the same time. Importantly, the maximum stimulatory effective concentration, NOEC/the zero effective concentration point, and EC50 remained relatively stable. Nine hormesis transmission phenomena were observed in different mixture rays. While all mixtures primarily exhibited additive action, varying degrees of synergism and antagonism were noted in binary mixtures, with no strong synergism or antagonism observed in ternary and quaternary mixtures. These findings offer valuable insights for the screening of HFCs and their mixtures, as well as the study of hormesis transmission in personal care products.


Assuntos
Cosméticos , Vibrio , Hormese , Ácido Edético
3.
Sci Total Environ ; 904: 167204, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37741385

RESUMO

Disinfectants and their mixtures can induce hormesis. However, how the mixture hormesis is related to those of components and the interactions in disinfectant mixtures remain unclear. In this paper, the luminescence inhibition toxicities of chlorinated sodium phosphate (CSP), dodecyl dimethyl benzyl ammonium bromide (DOB), dodecyl dimethyl benzyl ammonium chloride (DOC), ethanol (EtOH), glutaraldehyde (GLA), hydrogen peroxide (H2O2), isopropyl alcohol (IPA), n-propanol (NPA), and 20 mixture rays in four mixture systems (EtOH-H2O2, DOB-H2O2, DOC-EtOH, and EtOH-IPA-NPA) containing at least one component showing hormesis to Vibrio qinghaiensis sp.-Q67 (Q67) were determined at 0.25, 3, 6, 9, and 12 h. The synergism-antagonism heatmap based on independent action model (noted as SAHmapIA) was developed to systematically evaluate the interactions in various mixtures. It was shown that five disinfectants (CSP, EtOH, H2O2, NPA, and IPA) and 17 mixture rays exhibited time-dependent hormesis. The hormetic component was responsible for the hormesis of the mixture rays. Most mixture rays showed low- concentration/dose additive action and high-concentration/dose synergism at different time. This study further exemplified the interrelationship between the hormesis in the mixtures and their components and implied the need to pay attention to the time-dependent hormesis and interactions induced by the disinfectants.


Assuntos
Desinfetantes , Vibrio , Hormese , Desinfetantes/toxicidade , Peróxido de Hidrogênio , Interações Medicamentosas
4.
Sci Total Environ ; 904: 166651, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647971

RESUMO

Hormesis is a widely recognized and extensively studied phenomenon. However, few studies have described the quantitative characteristics of hormesis required for appropriate risk assessment. Although skin care product (SCP) mixtures and their active ingredients can induce the hormesis of Vibrio qinghaiensis sp.-Q67 (Q67), the quantitative characteristics of time-dependent hormetic dose responses in SCPs have not yet been investigated. In this study, 28 SCP mixtures were tested for luminescence toxicity against Q67 after five exposure durations (0.25, 3, 6, 9, and 12 h). With increasing exposure duration, the concentration response curves (CRCs) were classified as constant monotonic nonlinear (S-shaped) for four SCPs, S- to hormetic (J-shaped) for 13 SCPs, and constant J-shaped for 11 SCPs. Of 140 CRCs, 98 were J-shaped. An increased frequency of SCPs inducing hormesis was observed. The toxicity (pEC50) of the SCPs was independent of the exposure duration and product type. The maximum stimulatory effect (Emin) of the 12 SCPs increased with exposure duration. We proposed a modified parameter, the width of inhibition dose zone (WIDZ; EC50/EC10), to depict the width of inhibition dose zone. The WIDZ of S-shaped CRCs were significantly larger than that of J-shaped CRCs. In addition, the characteristic parameters reported in the general literature were analyzed. The good linear relationship between EC50 and the maximum stimulatory effective concentration (ECmin) indicated that toxicity may be transformed into stimulatory effects over exposure durations. The width of stimulation dose zone (WSDZ) and Emin of the seven SCPs had the same increasing trends with increasing exposure duration. The combination of WIDZ with other characteristic parameters (e.g., zero effective concentration point, ECmin, etc.) could better depict hormesis with low-dose stimulation and high-dose inhibition. The quantitative characteristics of the dose-responses of hormesis-inducing SCPs could provide reference basis for the risk assessment of SCP mixtures.


Assuntos
Hormese , Vibrio , Luminescência , Higiene da Pele
5.
Toxics ; 11(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505529

RESUMO

For persistent organic pollutants, a concern of environmental supervision, predicted no-effect concentrations (PNECs) are often used in ecological risk assessment, which is commonly derived from the hazardous concentration of 5% (HC5) of the species sensitivity distribution (SSD). To address the problem of a lack of toxicity data, the objectives of this study are to propose and apply two improvement ideas for SSD application, taking polycyclic aromatic hydrocarbons (PAHs) as an example: whether the chronic PNEC can be derived from the acute SSD curve; whether the PNEC may be calculated by HC10 to avoid solely statistical extrapolation. In this study, the acute SSD curves for eight PAHs and the chronic SSD curves for three PAHs were constructed. The quantity relationship of HC5s between the acute and chronic SSD curves was explored, and the value of the assessment factor when using HC10 to calculate PNEC was derived. The results showed that, for PAHs, the chronic PNEC can be estimated by multiplying the acute PNEC by 0.1, and the value of the assessment factor corresponding to HC10 is 10. For acenaphthene, anthracene, benzo[a]pyrene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene, the chronic PNECs based on the acute HC10s were 0.8120, 0.008925, 0.005202, 0.07602, 2.328, 12.75, 0.5731, and 0.05360 µg/L, respectively.

6.
Chemosphere ; 339: 139537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37478992

RESUMO

There have been concerns raised about the environmental effects of perfluoroalkyl substances (PFASs) because of their toxicity, widespread distribution, and persistence. Understanding the occurrences and ecological risk posed by PFASs is essential, especially for the short-chain replacements perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), which are now becoming predominant PFASs. The lack of aquatic life criteria (ALC), however, prevents an accurate assessment of the ecological risks of PFBA and PFBS. This study thus investigated the occurrence of 15 PFASs at 29 sampling sites in Shaying River Basin (in China) systematically, conducted the toxicity tests of PFBA and PFBS on eight resident aquatic organisms in China, and derived the predicted non-effect concentration (PNEC) values for PFBA and PFBS for two environmental media in China. The results showed that the total PFASs concentrations (ΣPFASs) ranged from 5.07 to 20.32 ng/L (average of 10.95 ng/L) in surface water, whereas in sediment, ΣPFASs ranged from 6.46 to 20.05 ng/g (dw) (average of 11.51 ng/g). The presence of PFBS was the most prominent PFASs in both water (0.372-8.194 ng/L) and sediment (4.54-15.72 ng/g), demonstrating that short-chain substitution effects can be observed in watersheds. The PNEC values for freshwater and sediment were 6.60 mg/L and 8.30 mg/kg (ww), respectively, for PFBA, and 14.04 mg/L, 37.08 mg/kg (ww), respectively, for PFBS. Ecological risk assessment of two long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and two short-chain PFASs, PFBA and PFBS, using the hazard quotient method revealed that Shaying River and other major River Basins in China were at risk of PFOS contamination. This study contributes to a better understanding of the presence and risk of PFASs in the Shaying River and first proposes the ALCs for PFBA and PFBS in China, which could provide important reference information for water quality standards.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Rios , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Exposição Ambiental , Ácidos Alcanossulfônicos/toxicidade , Ácidos Alcanossulfônicos/análise , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , China
7.
Sci Total Environ ; 893: 164918, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327899

RESUMO

With the widespread use of pesticides, the coexistence of multiple low-residue pesticides in environmental media has increased significantly, and the "cocktail" effect caused by this phenomenon has garnered increasing attention. However, owing to the scarcity of information regarding the modes of action (MOAs) of chemicals, the application of concentration addition (CA) models for evaluating and predicting the toxicity of mixture with similar MOAs is limited. Additionally, the joint toxicity laws of complex mixture systems to different toxicity endpoints in organisms remain unclear, and effective methods to test the mixture toxicity on lifespan and reproductive inhibition are lacking. Therefore, in this study, the similarity of pesticide MOAs was characterized using molecular electronegativity-distance vector (MEDV-13) descriptors based on eight pesticides (aldicarb, methomyl, imidacloprid, thiamethoxam, dichlorvos, dimethoate, methamidophos and triazophos). Additionally, the methods of lifespan and reproduction inhibition microplate toxicity analysis of elegans (EL-MTA and ER-MTA) were established to test the lifespan and reproduction inhibition toxicity of Caenorhabditis elegans. Finally, a unified scale synergistic-antagonistic heatmap (SAHscale) method was proposed to explore the combined toxicity of the mixtures on the lifespan, reproduction, and mortality of nematodes. The results showed that the MEDV-13 descriptors could effectively characterize the similarity in MOAs. The lifespan and reproductive ability of Caenorhabditis elegans were significantly inhibited when the pesticide exposure concentration was one order of magnitude lower than the lethal dose. The sensitivity of lifespan and reproductive endpoints to mixtures was dependent on the concentration ratio. The same rays in the mixture had consistent toxicity interactions on the lifespan and reproductive endpoints of Caenorhabditis elegans. In conclusion, we demonstrated the feasibility of MEDV-13 in characterizing the similarity of MOAs, and provided a theoretical basis for exploring the mechanism of chemical mixtures by studying their apparent toxicity of mixtures on nematode lifespan and reproduction endpoints.


Assuntos
Nematoides , Praguicidas , Animais , Caenorhabditis elegans , Praguicidas/toxicidade , Relação Dose-Resposta a Droga , Dimetoato
8.
Environ Int ; 175: 107940, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119652

RESUMO

The research framework combining global sensitivity analysis (GSA) with quantitative high-throughput screening (qHTS), called GSA-qHTS, provides a potentially feasible way to screen for important factors that induce toxicities of complex mixtures. Despite its value, the mixture samples designed using the GSA-qHTS technique still have a shortage of unequal factor levels, which leads to an asymmetry in the importance of elementary effects (EEs). In this study, we developed a novel method for mixture design that enables equal frequency sampling of factor levels (called EFSFL) by optimizing both the trajectory number and the design and expansion of the starting points for the trajectory. The EFSFL has been successfully employed to design 168 mixtures of 13 factors (12 chemicals and time) that each have three levels. By means of high-throughput microplate toxicity analysis, the toxicity change rules of the mixtures are revealed. Based on EE analysis, the important factors affecting the toxicities of the mixtures are screened. It was found that erythromycin is the dominant factor and time is an important non-chemical factor in mixture toxicities. The mixtures can be classified into types A, B, and C mixtures according to their toxicities at 12 h, and all the types B and C mixtures contain erythromycin at the maximum concentration. The toxicities of the type B mixtures increase firstly over time (0.25 âˆ¼ 9 h) and then decrease (12 h), while those of the type C mixtures consistently increase over time. Some type A mixtures produce stimulation that increases with time. With the present new approach to mixture design, the frequency of factor levels in mixture samples is equal. Consequently, the accuracy of screening important factors is improved based on the EE method, providing a new method for the study of mixture toxicity.


Assuntos
Vibrio , Eritromicina/farmacologia , Misturas Complexas , Ensaios de Triagem em Larga Escala
9.
Am Surg ; 89(11): 4431-4437, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35797111

RESUMO

BACKGROUND: The aim of this study was to evaluate the application of pulse contour cardiac output (PiCCO) in patients with traumatic shock. METHODS: Seventy-eight patients with traumatic shock were included and grouped. The control group (CG, n = 39) underwent fluid resuscitation through transthoracic echocardiography (TTE) monitoring, and the research group (RG, n = 39) received PiCCO-guided fluid resuscitation. RESULTS: The mechanical ventilation time, duration of vasoactive drug use, and duration of stay in the intensive care unit were lower in the RG compared to the CG (P < .05). At 72 h after fluid resuscitation, the mean arterial pressure and central venous pressure in the RG were higher than those in the CG (P < .05). The stroke volume variation and distensibility index of the inferior vena cava were lower at 72 h after fluid resuscitation, but the levels of extravascular lung water, global end-diastolic volume index, and intrathoracic blood volume index were higher in the RG (P < .05). The levels of endothelial 1, nitrogen monoxide, tumor necrosis factor-α, procalcitonin, C-reactive protein, and partial pressure of carbon dioxide at 72 h after fluid resuscitation in the RG were lower than those in the CG (P < .05). CONCLUSION: PiCCO-guided liquid resuscitation may help to accurately evaluate the volumetric parameters, alleviate symptoms of ischemia and hypoxia, regulate hemodynamics and blood gas analysis, reduce inflammatory reactions, improve endothelial functions, and effectively guide the usage of vascular active drugs.


Assuntos
Choque Séptico , Humanos , Choque Traumático/terapia , Débito Cardíaco/fisiologia , Hemodinâmica , Frequência Cardíaca , Hidratação , Ressuscitação
10.
Chemosphere ; 298: 134303, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288184

RESUMO

The widespread use of pesticides results in their frequent detection in water bodies and other environmental media. Pesticide residues may cause certain risks to the environment and human health, and reliable predicted no effect concentrations (PNEC) must be obtained when assessing environmental risks. Species sensitivity distribution (SSD) is an important method for the derivation of chemical PNECs. Construction of the SSD model requires sufficient toxicity data to various species including at least eight families in three phyla, suitable nonlinear fitting functions and assessment factors (AFs) with certain uncertainty. However, most chemicals could not collect sufficient species toxicity data, while some chemicals had sufficient species toxicity data but could not find suitable fitting functions, thus hindering the construction of effective SSD models. To this end, the established QSAR models were applied to predict toxicity of chemicals to specific species to fill in the toxicity data gaps required for SSD and selecting multiple nonlinear functions to optimize the SSD model. Combined with QSAR and SSD methods, a new method of PNEC derivation was developed and successfully applied to the derivation of PNEC for 35 pesticides. Three QSAR models were used to predict the toxicities of six pesticides with few toxicity data. Nine two-parameter nonlinear functions were used to fit the toxicity-cumulative probability data one by one to determine the optimal SSD models. The hazardous concentrations at the cumulative probability of 5% and 10%, i. e, HC5 and HC10, respectively, were calculated by the optimal SSD model. The assessment factor used to determine the PNEC of the chemical based on the HC10 was derived from the quantitative correlation between HC10 and HC5 of pesticides found in this study. When the toxicity data are insufficient, it may be more appropriate to calculate the PNECs of chemicals using HC10 than using HC5.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/toxicidade , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Poluentes Químicos da Água/análise
11.
Chemosphere ; 289: 133190, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883133

RESUMO

At present, the toxicity prediction of mixtures mainly focuses on the concentration addition (CA) and independent action (IA) based on individual toxicants to predict the toxicity of multicomponent mixtures. This process of predicting the toxicity of multicomponent mixtures based on single substances or low component mixtures is called down-to-top method in this study. However, due to the particularity of some toxicants, we have to use the top-to-down idea to obtain or eliminate the toxicity of some components from mixtures. For example, the toxicity of toxicants is obtained from the toxicity of a mixture with, especially toxic, cosolvent added. In the study, two top-to-down methods, the inverse CA (ICA) and inverse IA (IIA) models, were proposed to eliminate the effects of a certain component from multicomponent mixtures. Furthermore, taking the eight binary mixtures consisting of different shapes of cosolvents (isopropyl alcohol (IPA) having hormesis and dimethyl sulfoxide (DMSO)) and toxicants (two ionic liquids and two pesticides) as an example, combined with the interaction evaluated by CA and IA model, the influence of different shapes of components on top-to-down toxicity prediction was explored. The results showed that cosolvent IPA having hormesis may cause unpredictable effects, even at low concentrations, and should be used with caution. For DMSO, most of the toxicant's toxicity obtained by ICA and IIA models were almost in accordance with those observed experimentally, which showed that ICA and IIA could effectively eliminate the effects of cosolvent, even if toxic cosolvent, from the mixture. Ultimately, a frame of cosolvent use and toxicity correction for the hydrophobic toxicant were suggested based on the top-to-down toxicity prediction method. The proposed methods improve the existing framework of mixture toxicity prediction and provide a new idea for mixture toxicity evaluation and risk assessment.


Assuntos
Líquidos Iônicos , Praguicidas , Vibrio , Hormese , Medição de Risco
12.
Comb Chem High Throughput Screen ; 25(9): 1450-1461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34182904

RESUMO

BACKGROUND: The Peroxisome Proliferator-Activated Receptors (PPARs) are ligandactivated transcription factors belonging to the nuclear receptor family. The roles of PPARα in fatty acid oxidation and PPARγ in adipocyte differentiation and lipid storage have been widely characterized. Compounds with dual PPARα/γ activity have been proposed, combining the benefits of insulin sensitization and lipid lowering into one drug, allowing a single drug to reduce hyperglycemia and hyperlipidemia while preventing the development of cardiovascular complications. METHODS: The new PPARα/γ agonists were screened through virtual screening of pharmacophores and molecular dynamics simulations. First, in the article, the constructed pharmacophore was used to screen the Ligand Expo Components-pub database to obtain the common structural characteristics of representative PPARα/γ agonist ligands. Then, the accepted ligand structure was modified and replaced to obtain 12 new compounds. Using molecular docking, ADMET and molecular dynamics simulation methods to screen the designed 12 ligands, analyze their docking scores when they bind to the PPARα/γ dual targets, their stability and pharmacological properties when they bind to the PPARα/γ dual targets. RESULTS: We performed pharmacophore-based virtual screening for 22949 molecules in Ligand Expo Components-pub database. The compounds that were superior to the original ligand were performed structural analysis and modification, and a series of compounds with novel structures were designed. Using precise docking, ADMET prediction and molecular dynamics methods to screen and verify newly designed compounds, and the above compounds show higher docking scores and lower side effects. CONCLUSION: 9 new PPARα/γ agonists were obtained by pharmacophore modeling, docking analysis and molecular dynamics simulation.


Assuntos
Simulação de Dinâmica Molecular , PPAR alfa , Ligantes , Lipídeos , Simulação de Acoplamento Molecular , PPAR alfa/agonistas , PPAR gama/agonistas
13.
Biochem Biophys Res Commun ; 579: 40-46, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34583194

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a member of the phosphotyrosine phosphatase family and plays an important role in the signal transduction of diabetes. Inhibition of PTP1B activity can increase insulin sensitivity and reduce blood sugar levels. Therefore, it is urgent to find compounds with novel structures that can inhibit PTP1B. This study designed imidazolidine-2,4-dione derivatives through the computer-aided drug design (CADD) strategy, and the Comp#10 showed outstanding inhibitory ability. (IC50 = 2.07 µM) and selectivity. The inhibitory mechanism at molecular level of Comp#10 on PTP1B was studied by molecular dynamics simulation. The results show that the catalytic region of PTP1B protein is more stable, which makes the catalytic sites unsuitable for exposure. Interestingly, the most obvious changes in the interaction between residues in the P-loop region (such as: His214, Cys215, and Ser216). In short, this study reported for the first time that imidazolidine-2,4-dione derivatives as novel PTP1B inhibitors had good inhibitory activity and selectivity, providing new ideas for the development of small molecule PTP1B inhibitors.


Assuntos
Imidazolidinas/síntese química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Algoritmos , Domínio Catalítico , Química Farmacêutica/métodos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos , Humanos , Imidazolidinas/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Software
14.
Ecotoxicol Environ Saf ; 215: 112141, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33740491

RESUMO

Current Chinese surface water environmental quality standard GB3838-2002 for ammonia fails to take water quality factors and native organism distributions in different basins into consideration. In this study, ammonia toxicity tests were performed using three aquatic organisms native to the Shaying River Basin (China). Published ammonia toxicity data with pH and temperature, and toxicity data acquired in this study were used to establish water quality criteria. The final criterion maximum concentration (CMC) and criterion continuous concentration (CCC) for the Shaying River Basin were 5.09 and 1.36 (mg total ammonia nitrogen (TAN))/L (pH 7 and 20 °C), respectively. In addition, based on the corresponding relationship between ammonia toxicity and temperature and pH, the ecological risk assessment of ammonia was conducted in different seasons for the Shaying River using a tiered approach of both hazard quotient (HQ) and the joint probability (JPC) methods. Two methods gave consistent results: the ecological risks of ammonia to aquatic species in the Shaying River Basin were severe and the risk could be ranked as wet season > flat season > dry season. It is therefore indicating that monitoring, evaluation, and early warning of ammonia pollution need to be taken to prevent and control the risks posed by ammonia pollution, especially for wet season (because of high temperatures and pH) or flat season (because of high pH values). We hope the present work could provide valuable information to manage and control ammonia pollution in the Shaying River Basin.


Assuntos
Amônia/análise , Poluentes Químicos da Água/análise , Amônia/toxicidade , Organismos Aquáticos , China , Monitoramento Ambiental/métodos , Nitrogênio , Medição de Risco/métodos , Rios/química , Estações do Ano , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Qualidade da Água/normas
15.
J Biomol Struct Dyn ; 39(5): 1853-1864, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32189570

RESUMO

PPARα and PPARγ play important roles in regulating glucose and lipid metabolism. In recent years, the development of dual PPAR agonists has become a hot topic in the field of anti-diabetic medicinal chemistry. The dual PPARα/γ agonists can both improve metabolism and reduce side effects caused by single drugs, and has become a promising strategy for designing effective drugs for the treatment of type 2 diabetes. In this study, by means of virtual screening, molecular docking and ADMET prediction technology, a representative compound with higher docking score, lower toxicity than original ligands was gained from the Ligand Expo Components database. It was observed through MD simulation that the representative compound not only has the function of activating the PPARα target and the PPARγ target, but also show a more favorable binding mode when the representative compound binds to the two receptors compared to the original ligands. Our results provided an approach to rapidly find novel PPARα/γ dual agonists for the treatment of type 2 diabetes mellitus (T2DM).This paper explores novel compounds targeting PPARα/γ dual agonists by using molecular docking, ADMET prediction, and molecular dynamics simulation methods. The specific flowchart is as follows: HighlightsThe results show that the skeleton of compound M80 is not only similar to Saroglitazar but also higher than that of Saroglitazar in activity.This study explained the binding modes of saroglitazar-PPARα/γ complexes and provided structure reference for the research and development of novel PPARα/γ dual agonists.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Ligantes , Simulação de Acoplamento Molecular , PPAR alfa , PPAR gama
16.
J Autoimmun ; 116: 102562, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168359

RESUMO

Adult-onset Still's disease (AOSD) is a rare autoinflammatory disease with systemic involvement, and its pathophysiology remains unclear. Genome-wide association studies (GWAS) in the Chinese population have revealed an association between AOSD and the major histocompatibility complex (MHC) locus; however, causal variants in the MHC remain undetermined. In the present study, we identified independent amino-acid polymorphisms in human leukocyte antigen (HLA) molecules that are associated with Han Chinese patients with AOSD by fine-mapping the MHC locus. Through conditional analyses, we identified position 34 in HLA-DQα1 (p = 1.44 × 10-14) and Asn in HLA-DRß1 position 37 (p = 5.12 × 10-11) as the major determinants for AOSD. Moreover, we identified the associations for three main HLA class II alleles: HLA-DQB1*06:02 (OR = 2.70, p = 3.02 × 10-14), HLA-DRB1*15:01 (OR = 2.44, p = 3.66 × 10-13), and HLA-DQA1*01:02 (OR = 1.97, p = 1.09 × 10-9). This study reveals the relationship between functional variations in the class II HLA region and AOSD, implicating the MHC locus in the pathogenesis of AOSD.


Assuntos
Aminoácidos/genética , Predisposição Genética para Doença/genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Polimorfismo de Nucleotídeo Único , Doença de Still de Início Tardio/genética , Adulto , Alelos , Povo Asiático/genética , China , Frequência do Gene , Predisposição Genética para Doença/etnologia , Estudo de Associação Genômica Ampla/métodos , Genótipo , Cadeias alfa de HLA-DQ/química , Cadeias HLA-DRB1/química , Haplótipos , Humanos , Desequilíbrio de Ligação , Modelos Moleculares , Conformação Proteica , Doença de Still de Início Tardio/etnologia
17.
Huan Jing Ke Xue ; 41(11): 4989-4998, 2020 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124242

RESUMO

In order to study the pollution source and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Jiaxing river network, PAHs were analyzed by GC-MS. The results show that with the influence of rainfall and surface runoff in the wet season, the types and mass concentrations of PAHs in the river network of Jiaxing differ from the dry season. Ten and 16 priority PAHs were detected in the dry season and wet season, respectively. The average mass concentration of PAHs in the dry season was 143.83ng·L-1 and 73.47ng·L-1 in the wet season. The range of mass concentration of PAHs in the dry and wet season was 77.32-283.76ng·L-1 and 13.05-133.02ng·L-1, respectively, and 2-ring and 3-ring PAHs accounted for 79.18% in the dry season and 73.60% in the wet season. PAHs pollution in the river network of Jiaxing was at a low level compared with the domestic and foreign areas. The isomer ratio and principal component analysis found that the PAHs in the Jiaxing river network mainly come from urban non-point source pollution, combustion source, and traffic pollution in the dry season and wet season. The results of the Kalf risk entropy method show that in the dry season, naphthalene(Nap), acenaphthylene(Acy), acenaphthene(Ace), fluorene(Flu), phenanthrene(Phe), anthracene(Ant), fluoranthene(Fla), pyrene(Pyr), and benzo(a)anthracene(BaA) are at moderate ecological risk. In the wet season, Nap, Acy, Flu, Phe, Fla, Pyr, BaA, benzo(b)fluoranthene(BbF), benzo(k)fluoranthene(BkF), benzo(a)pyrene(BaP), indeno(1,2,3-cd)pyrene(InP), and benzo(g,h,i)perylene(BghiP) are at moderate ecological risk. In the dry season, ∑PAHs are at moderate ecological risk, and low in the wet season. On the whole, PAHs pollution in the Jiaxing river network presents moderate ecological risk levels, and measures to reduce the ecological risk of PAHs in the river network should be taken by the Departments concerned.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Monitoramento Ambiental , Poluição Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Rios , Estações do Ano
18.
J Biomol Struct Dyn ; 38(14): 4143-4161, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31556349

RESUMO

The therapeutic potential of PPARs antagonists extends beyond diabetes. PPARs antagonists represent a new drug class that holds promise as a broadly applicable therapeutic approach for cancer treatment. Thus, there is a strong need to develop a rational design strategy for creating PPARs antagonists. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) models of PPARα receptor (CoMFA-1, q 2 = 0.636, r 2 = 0.953; CoMSIA-1, q 2 = 0.779, r 2 = 0.999) and PPARδ receptor (CoMFA-2, q 2 = 0.624, r 2 = 0.906; CoMSIA-2, q 2 = 0.627, r 2 = 0.959) were successfully constructed using 35 triazolone ring derivatives. Contour map analysis revealed that the electrostatic and hydrophobic fields played vital roles in the bioactivity of dual antagonists. Molecular docking studies suggested that the hydrogen bonding, electrostatic and hydrophobic interactions all influenced the binding of receptor-ligand complex. Based on the information obtained above, we designed a series of compounds. The docking results were mutually validated with 3D-QSAR results. Three-dimensional-QSAR and absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions indicated that 19 newly designed compounds possessed excellent biological activity and physicochemical properties. In summary, this research could provide theoretical guidance for the structural optimization of novel PPARα and δ dual antagonists. Communicated by Ramaswamy H. Sarma.


Assuntos
PPAR delta , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , PPAR alfa
20.
Environ Sci Pollut Res Int ; 26(33): 34622-34632, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31654308

RESUMO

Organophosphorus pesticides are effective, cheap, and used extensively but can harm aquatic organism and human health. Here, water quality criteria (WQCs) for dichlorvos (DDVP) and malathion (MAL) were derived. Nine aquatic organisms native to China were used in toxicity tests. Published toxicity data for aquatic organisms native and non-native to China were also analyzed. DDVP and MAL WQCs were derived using (log-normal model) species sensitivity distributions. Species sensitivity distribution curves indicated native and non-native species have different sensitivities to DDVP. The sensitivities of native and non-native species to MAL were not different because non-native species data for fewer than eight genera were available, so further research is required. The results indicated that native species need to be considered when deriving WQCs. The criteria maximum concentration (CMC) and criteria continuous concentration (CCC) were 1.33 and 0.132 µg/L, respectively, for DDVP, and 0.100 and 0.008 µg/L, respectively, for MAL. The CMCs for DDVP and MAL derived using ETX 2.0 software and species sensitivity ranks were different from the CMCs obtained using the SSD method because of parameter uncertainties. The DDVP and MAL WQCs were significantly lower than Chinese surface water quality standard thresholds. The results provide basic data for revising these thresholds.


Assuntos
Diclorvós/análise , Malation/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Animais , Organismos Aquáticos , China , Humanos , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...